Abstract

We report on the feedback-optimized extraordinary optical transmission of continuous-variable entangled states through a hexagonal metal-hole array. The continuous-variable entanglements from a nondegenerate optical parametric amplifier are first demonstrated to survive after a photon-plasmon-photon conversion process. By controlling the reflected light from the metal-hole array, a significant enhancement of quantum correlations has then been experimentally achieved, compared to the case without such coherent feedback control. This result presents a useful technique to efficiently recover the substantial reflective losses in plasmonic circuits for quantum information processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.