Abstract

The tubuloglomerular feedback (TGF) system in the kidney, a key regulator of glomerular filtration rate, has been shown in physiologic experiments in rats to mediate oscillations in thick ascending limb (TAL) tubular fluid pressure, flow, and NaCl concentration. In spontaneously hypertensive rats, TGF-mediated flow oscillations may be highly irregular. We conducted a bifurcation analysis of a mathematical model of nephrons that are coupled through their TGF systems; the TALs of these nephrons are assumed to have compliant tubular walls. A characteristic equation was derived for a model of two coupled nephrons. Analysis of that characteristic equation has revealed a number of parameter regions having the potential for differing stable dynamic states. Numerical solutions of the full equations for two model nephrons exhibit a variety of behaviors in these regions. Also, model results suggest that the stability of the TGF system is reduced by the compliance of TAL walls and by internephron coupling; as a result, the likelihood of the emergence of sustained oscillations in tubular fluid pressure and flow is increased. Based on information provided by the characteristic equation, we identified parameters with which the model predicts irregular tubular flow oscillations that exhibit a degree of complexity that may help explain the emergence of irregular oscillations in spontaneously hypertensive rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.