Abstract

The question of realization and feedback linearization of a class of differential-algebraic systems is considered. Based on nonlinear inversion of an input-output map, an analytical expression for the constraint force vector satisfying the algebraic constraints is derived. In this derivation, certain requirements on the relative degree of the output variables are relaxed. Using a new representation of the system in an extended state space, a control law is derived for the independent control of the chosen output variables satisfying algebraic constraints. These results are applied for the position and force control of robotic manipulators. Simulation results are presented for a three link robotic arm with revolute joints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.