Abstract

The whirl mode, seriously affecting the stability of active magnetic bearings (AMBs), is a hot issue in the AMBs-rotor system. This article stresses a whirl mode problem accompanied by the operating point deviation when the magnetically suspended control moment gyro outputs torque. A feedback linearization controller is proposed to decouple the whirl mode effects from the system state-space representation. A robust controller for uncertain systems is also used to solve the operating point deviation problem. First, the AMBs-rotor system's state-space representation containing the whirl mode terms is described. Next, a system uncertainty caused by the operating point deviation is discussed. Then, a feedback linearization controller combined with a robust controller for uncertain systems is designed. Finally, simulations and experiments for validity verification are presented, and comparative experiments with a PID controller and a robust controller are shown and compared in this article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.