Abstract

AbstractObservations show that magnetic pulsations with frequencies around 1 mHz are frequently detected simultaneously at different latitudes on the ground, in the inner magnetosphere, and in the solar wind. The coupling between oscillations in the dynamic pressure or magnetic field carried by the solar wind and the ultra‐low frequency (ULF) waves detected on the ground at high latitudes has been suggested in several studies. We present results from a numerical study of ultra‐low‐frequency waves detected by the ground magnetometers at middle latitudes during substorm. We investigate the hypothesis that these waves are generated by the ionospheric feedback instability driven by the large‐scale electric field in the ionosphere. This field is associated with the surface waves propagating along the ambient magnetic field on a strong perpendicular gradient in the plasma density occurring in the equatorial magnetosphere. The gradient in the plasma density is associated with the plasmapause. The plasmapause moves to the middle latitude when the plasmasphere erodes during substorm. The energy from the external driver can be coupled to the large‐scale surface Alfvén waves traveling along the field lines into the ionosphere and generating small‐scale intense ULF waves and field‐aligned currents at middle latitudes. The simulations of the two‐fluid magnetohydrodynamics model confirm this scenario, and the numerical results show a good quantitative agreement with the observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.