Abstract

The feedback integrators method is improved, via the celebrated Dirac formula, to integrate the equations of motion for mechanical systems with holonomic constraints so as to produce numerical trajectories that remain in the constraint set and preserve the values of quantities, such as energy, that are theoretically known to be conserved. A feedback integrator is concretely implemented in conjunction with the first-order Euler scheme on the spherical pendulum system and its excellent performance is demonstrated in comparison with the RATTLE method, the Lie–Trotter splitting method, and the Strang splitting method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.