Abstract

Feedback is proposed for distinguishing between two weak coherent states with phases differing by ∼π. The mutual nonorthogonality of such states gives rise to a discrimination error, which can be reduced by using feedback. An optical quantum channel is discussed where the input is classical information encoded in two weak coherent states. For a channel with feedback, the discrimination error probability is calculated, and the mutual entropy that quantifies the fidelity between input and output is evaluated. We find that the use of a feedback loop in a quantum communication channel can increase the mutual entropy when canonical position or photon number is measured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.