Abstract

The feedback group method of data handling (GMDH)-type neural network algorithm proposed in this paper is applied to 3-dimensional medical image recognition of the brain. The neural network architecture fitting the complexity of the medical images is automatically organized so as to minimize the prediction error criterion defined as Akaikepsilas information criterion (AIC) or prediction sum of squares (PSS). In this algorithm, the optimum neural network architecture is automatically selected from three types of neural network architectures such as the sigmoid function type neural network, the radial basis function (RBF) type neural network and the polynomial type neural network. The recognition results show that the feedback GMDH-type neural network algorithm is useful for the 3-dimensional medical image recognition of the brain and is very easy to apply the practical complex problem because the optimum neural network architecture is automatically organized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.