Abstract
A revised group method of data handling (GMDH)-type neural network algorithm for medical image recognition is proposed, and is applied to medical image analysis of cancer of the liver. The revised GMDH-type neural network algorithm has a feedback loop and can identify the characteristics of the medical images accurately using feedback-loop calculations. In this algorithm, the polynomial type and the radial basis function (RBF)-type neurons are used for organizing the neural network architecture. The optimum neural network architecture fitting the complexity of the medical images is automatically organized so as to minimize the prediction error criterion, defined as the prediction sum of squares (PSS).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.