Abstract
In this paper, the global exponential stabilization of two-level stochastic quantum systems is achieved by using measurement-based feedback strategies, including state feedback and noise-assisted feedback, and the state convergence rate is improved by dividing the state space into multiple subspaces and using different feedback controls in different state subspaces. For both the combination of two continuous noise-assisted feedback and the combination of state feedback and noise-assisted feedback, the state space is divided based on the comparison of real-time state convergence rate under different measurement-based feedback strategies, respectively. The global exponential convergence and the effect of dividing state space in improving state convergence rate for two-level quantum systems are proved in theory and verified in numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.