Abstract
The main theoretical novelty of this paper is the state and feedback equivalence of the underactuated 4-degrees of freedom planar walking-like mechanical chain system with 3 actuators to its 8-dimensional almost linear form with 3 virtual inputs. Moreover, the only residual nonlinearity vanishes on the 4-dimensional linear subspace being forward invariant when 2 of 3 virtual inputs are set to be zero. Dynamics inside that subsystem is actually the chain of 4 integrators fed by the remaining single virtual input and it can be interpreted as a rich variety of synchronous movements of torsos and legs. In such a way, the seemingly abstract and purely theoretical result can be used to design the walking-like movement during the single-support phase. The impact effect during the impulsive-like double-support phase is then attenuated by further special trajectories tuning and finite-time stabilization technique which provides the sustainable multi-step walking design. Moreover, the target walking-like trajectory is attracted by nearby trajectories. This further justify the importance and usefulness of the mentioned state and feedback equivalence. Its viability is further demonstrated by the simulations of various scenarios of the walking-like movement and the respective torsos behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.