Abstract

The amplitude of self-oscillating mechanical resonators in cavity optomechanical systems is typically limited by nonlinearities arising from the cavity’s finite optical bandwidth. We propose and demonstrate a feedback technique for increasing this limit. By modulating the cavity input field with a signal derived from its output intensity, we increase the amplitude of a self-oscillating GHz frequency mechanical resonator by 22% (an increase in coherent phonon number of 50%), limited only by the achievable optomechanical cooperativity of the system. This technique will advance applications dependent on high dynamic mechanical stress, such as coherent spin-phonon coupling, as well as the implementation of sensors based on self-oscillating resonators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call