Abstract
Graphene devices are known to have the potential to operate THz signals. In particular, graphene field-effect transistors (gFETs) have been proposed as devices to host plasmonic instabilities in the THz realm; for instance, Dyakonov–Shur (DS) instability which relies upon dc excitation. In this work, starting from a hydrodynamical description of the charge carriers, we extend the transmission line description of gFETs to a scheme with a positive feedback loop, also considering the effects of delay, which leads to the transcendental Laplace-transform transfer function, with complex frequency s, with terms of the form e−assechk(s)/s , for a given a∈R0+ arising from the delay time and with k∈N . Applying the conditions for the excitation of DS instability, we report an enhanced voltage gain in the linear regime that is corroborated by our simulations of the nonlinear hydrodynamic model for the charge carriers. This translates to both greater saturation amplitude—often up to 50% increase—and faster growth rate of the self-oscillations. Thus, we bring forth a prospective concept for the realization of a THz oscillator suitable for future plasmonic circuitry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.