Abstract

We discuss characteristic scales and direct physical analogy between the photoionization feedback in conventional positive corona discharges in air and the photoelectric feedback in discharges driven by relativistic runaway electrons in air. In a positive corona system the avalanche of electrons in bulk of discharge volume is initiated by specific distribution of photoionization far away from the electrode.  Under inception conditions in positive corona each electron arriving at the anode creates on average just enough seed electrons in discharge volume through photoionization to replicate itself. Under these self-sustained steady state conditions, photoionization feedback produces just enough secondary electrons upstream of the avalanche to maintain the system in steady state. Analogically, in case of relativistic electron avalanches a feedback process is realized when X-rays emitted by these electrons travel backwards with respect to the electron motion and generate new relativistic electron seeds due to the photoelectric absorption in air. It is demonstrated that terrestrial gamma-ray flashes are produced by growth of long bidirectional lightning leader system consisting of positive and stepping negative leaders. The spatial extent of streamer zones of a typical lightning leader with tip potential exceeding several tens of megavolts is on the order of 10–100 m. The photoelectric absorption of bremsstrahlung radiation generated by avalanching relativistic runaway electrons occurs efficiently on the same spatial scales. The intense multiplication of these electrons is triggered when the size of the negative leader streamer zone crosses a threshold of approximately 100 m (for sea-level air pressure conditions) allowing self-replication of these avalanches due to the upstream relativistic electron seeds generated by the photoelectric absorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call