Abstract

The feedback loop design of a half-bridge (HB) resonant inverter based on a piezoelectric transformer (PT) for driving a cold cathode fluorescent lamp (CCFL) is presented in this paper. In order to stabilize the CCFL driving current and luminance, the PT-based resonant inverter incorporating a feedback compensator is designed to track the operating frequency. The dynamic equations and the small-signal model of the presented inverter system are established by using the harmonic approximation and harmonic balance procedures. The feedback compensation is performed by applying the derived small-signal block diagram. The complete mathematical analysis and design considerations are presented in detail. The experimental results agree with the theoretical predictions and confirm the validity of the proposed design approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.