Abstract

Feedback is a fundamental mechanism existing in the human visual system, but has not been explored deeply in designing computer vision algorithms. In this paper, we claim that feedback plays a critical role in understanding convolutional neural networks (CNNs), e.g., how a neuron in CNNs describes an object's pattern, and how a collection of neurons form comprehensive perception to an object. To model the feedback in CNNs, we propose a novel model named Feedback CNN and develop two new processing algorithms, i.e., neural pathway pruning and pattern recovering. We mathematically prove that the proposed method can reach local optimum. Note that Feedback CNN belongs to weakly supervised methods and can be trained only using category-level labels. But it possesses a powerful capability to accurately localize and segment category-specific objects. We conduct extensive visualization analysis, and the results reveal the close relationship between neurons and object parts in Feedback CNN. Finally, we evaluate the proposed Feedback CNN over the tasks of weakly supervised object localization and segmentation, and the experimental results on ImageNet and Pascal VOC show that our method remarkably outperforms the state-of-the-art ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.