Abstract

In this paper, we investigate infinite horizon optimal control problems for parametrized partial differential equations. We are interested in feedback control via dynamic programming equations which is well-known to suffer from the curse of dimensionality. Thus, we apply parametric model order reduction techniques to construct low-dimensional subspaces with suitable information on the control problem, where the dynamic programming equations can be approximated. To guarantee a low number of basis functions, we combine recent basis generation methods and parameter partitioning techniques. Furthermore, we present a novel technique to construct non-uniform grids in the reduced domain, which is based on statistical information. Finally, we discuss numerical examples to illustrate the effectiveness of the proposed methods for PDEs in two space dimensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call