Abstract
We focus on model-based networked control of general linear dissipative distributed parameter systems, the infinite dimensional representation of which can be decomposed to finite-dimensional slow and infinite-dimensional fast and stable subsystems. The controller synthesis of such systems is addressed using adaptive proper orthogonal decomposition (APOD). Specifically, APOD is used to recursively construct locally accurate low dimensional reduced order models (ROMs). The ROM is included in the control structure to reduce the frequency of spatially distributed sensor measurements over the network by suspending communication. The main objective of the current work is to identify a criterion for minimizing communication bandwidth (snapshots transfer rate) from the distributed sensors to the control structure considering closed-loop stability. The proposed approach is successfully used to regulate the thermal dynamics in a tubular chemical reactor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.