Abstract

On the basis of the double-well ratchet potential which can be calculated theoretically and implemented experimentally, the influences of the time delay, the coupling constant, and the asymmetric parameter of the potential on the performance of a delayed feedback ratchet consisting of two Brownian particles coupled mutually with a linear elastic force are investigated. The centre-of-mass velocity of two coupled Brownian particles, the average effective diffusion coefficient, and the Pe number are calculated. It is found that the parameters are affected by not only the time delay and coupling constant but also the asymmetric parameter of the double-well ratchet potential. It is also found that the enhancement of the current may be obtained by varying the coupling constant of the system for the weak coupling case. It is expected that the results obtained here may be observed in some physical and biological systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.