Abstract

Reconciling the constraint of guaranteeing to always meet deadlines with the optimization objective of reducing waste of computing capacity lies at the heart of a large body of research on real-time systems. Most approaches to doing so require the application designer to specify a deeper characterization of the workload (and perhaps extensive profiling of its run-time behavior), which then enables shaping the resource assignment to the application. In practice, such approaches are weak as they load the designer with the heavy duty of a detailed workload characterization. We seek approaches for reducing the waste of computing resources for recurrent real-time workloads in the absence of such additional characterization, by monitoring the minimal information that needs to be observable about the run-time behavior of a real-time system: its response time. We propose two resource control strategies to assign resources: one based on binary-exponential search and the other, on principles of control. Both approaches are compared against the clairvoyant scenario in which the average/typical behavior is known. Via an extensive simulation, we show that both techniques are useful approaches to reducing resource computation while meeting hard deadlines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.