Abstract

In this paper, a new feedback active noise control (FBANC) system based on forward–backward error LMS (FBLMS) predictor is proposed. The misadjustment of the FBLMS predictor is about half that of the forward error LMS (FLMS) predictor. The new ANC system employs FBLMS predictors both for its main path (MP) predictor and for the noise canceler (NC) for the secondary path (SP) identification (SPI). To realize the MP predictor based on the FBLMS concept, a new FXLMS structure is proposed. But for the NC for the SPI, the FBLMS predictor is directly used. The MP predictor based on FBLMS reduces its misadjustment. Further the use of FBLMS predictor for the NC, as it gives a good prediction of primary noise component in the error (residual noise), improves the SNR for SPI. Thus, the improved SP estimate and the reduced misadjustment for the MP predictor achieved result in a significantly better overall noise reduction (of about 8 dB) over the ANC that uses the MP predictor and noise canceler for SPI, both based only on the forward error LMS algorithm. The computational load for the proposed algorithm is about twice that of FBANC that uses only forward error.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call