Abstract
The physiological regulation of the mitochondrial uncoupling protein 3 (UCP3) remains practically unexplored in fish and the aim of this study was to examine the effects of ration size on the regulation of UCP3 in heart, red skeletal muscle and white skeletal muscle of gilthead sea bream ( Sparus aurata L.). Juvenile fish were fed at three different levels for 11 weeks: i) full ration until visual satiety (R 100 group), ii) 70% of satiation (R 70 group) and iii) 70% of satiation with two finishing weeks at the maintenance ration (20% of the satiation level) (R 70–20 group). The thirty percent feed restriction improved fish performance, increasing feed conversion efficiency and circulating levels of insulin-like growth factor-I (IGF-I). Fish of the R 70–20 group showed reduced growth and low circulating levels of IGF-I in combination with increased circulating concentrations of growth hormone and free fatty acids. Feed restriction did not alter UCP3 transcript levels in white skeletal muscle, but improved this tissue's oxidative capacity as assessed by changes in glycolytic and oxidative mitochondrial enzyme activities. In contrast, in cardiac and red skeletal muscle tissues, this dietary treatment primarily increased UCP3 mRNA expression. The respiratory control ratio of freshly isolated heart mitochondria was slightly lower in R 70–20 fish than in R 100 fish, which suggests that there was an increase in mitochondrial uncoupling concomitant with the enhanced UCP3 mRNA expression. Altogether, these findings highlight the different adaptive mechanism of glycolytic and highly oxidative muscle tissues for their rapid adjustment to varying feed intake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.