Abstract

While there is generally no consensus about how nutrients determine milk synthesis in the mammary gland, it is likely that the mechanistic target of rapamycin complex 1 (mTORC1) plays a role as a key integrator of nutritional and mitogenic signals that can influence a multitude of catabolic and anabolic pathways. The objectives of this study were to evaluate acute changes (<24 h) in translational signaling, in addition to chronic changes (14 d) in mammary gland structure and composition, in response to a severe feed restriction. Fourteen lactating Holstein dairy cows were assigned to either ad libitum feeding (n = 7), or a restricted feeding program (n = 7). Feed-restricted cows had feed removed after the evening milking on d 0. Mammary biopsies and blood samples were collected 16 h after feed removal, after which cows in the restricted group were fed 60% of their previously observed ad lib intake for the remainder of the study. On d 14, animals were sacrificed and mammary glands dissected. In response to feed removal, an acute increase in plasma nonesterified fatty acid concentration was observed, concurrent to a decrease in milk yield. In mammary tissue, we observed downregulation of the mTORC1-S6K1 signaling cascade, in addition to reductions in mRNA expression of markers of protein synthesis, endoplasmic reticulum biogenesis, and cell turnover (i.e., transcripts associated with apoptosis or cell proliferation). During the 14 d of restricted feeding, animals underwent homeorhetic adaptation to 40% lower nutrient intake, achieving a new setpoint of 14% reduced milk yield with 18% and 29% smaller mammary secretory tissue dry matter and crude protein masses, respectively. On d 14, no treatment differences were observed in markers of protein synthesis or mammary cell turnover evaluated using gene transcripts and immunohistochemical staining. These findings implicate mTORC1-S6K1 in the early phase of the adaptation of the mammary gland's capacity for milk synthesis in response to changes in nutrient supply. Additionally, changes in rates of mammary cell turnover may be transient in nature, returning to basal levels following brief alterations that have sustained effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call