Abstract
In the Northern Highlands of Ethiopia, integrated crop-livestock production within smallholder farms is the dominant form of agricultural production. Feed availability and quality are serious constraints to livestock production in Ethiopia in general, and in its Northern Highlands in particular. The objective of this study was to describe the relationship between feed availability and quality and live weight gain, milk and manure production and the soil C balance in Teghane, Northern Highlands of Ethiopia. The so-called JAVA model procedure, that essentially predicts metabolizable energy intake and animal production on the basis of feed quality and quantity, has been used and linked to a soil carbon balance. Forages were ranked according to their quality (on the basis of metabolizable energy intake by livestock) in descending order. Rations were formulated by stepwise including components of increasingly lower quality to calculate the trade-offs between feed quantity and quality. In the model, the soil C balance was described in relation to soil organic matter decomposition, C input from roots, grazing and/or harvesting losses, feed residues and manure. Moreover, an analysis of monetary values of live weight gain/loss, manure and draught power is included. The results of the model showed that mean daily live weight gain and milk production per TLU continuously increased with decreasing herd size, while total annual live weight gain reached a maximum (62 Mg) at the use of the 30% best feeds and a herd size of 630 TLU. Soil C balance at this level of feed use is negative and deteriorates with increasing feed use. The model estimated an optimum herd size of 926 TLU to attain the maximum combined monetary value of live weight gain, manure and draught power at 50% feed use. Actual herd size in the study area was 1506 TLU. Our results indicate that in areas where feeds of very different quality are available, maximum benefits from meat and/or milk production and soil C balance can be attained by selective utilization of the best quality feeds, through a storage and carry-over system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.