Abstract

In the oil industry, the productivity of oil wells depends on the performance of the sub-surface equipment system. These systems often have problems stemming from sand, corrosion, internal pressure variation, or other factors. In order to ensure high equipment performance and avoid high-cost losses, it is essential to identify the source of possible failures in the early stage. However, this requires additional maintenance fees and human power. Moreover, the losses caused by these problems may lead to interruptions in the whole production process. In order to minimize maintenance costs, in this paper, we introduce a model for predicting equipment failure based on processing the historical data collected from multiple sensors. The state of the system is predicted by a Feed-Forward Neural Network (FFNN) with an SGD and Backpropagation algorithm is applied in the training process. Our model’s primary goal is to identify potential malfunctions at an early stage to ensure the production process’ continued high performance. We also evaluated the effectiveness of our model against other solutions currently available in the industry. The results of our study show that the FFNN can attain an accuracy score of 97% on the given dataset, which exceeds the performance of the models provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.