Abstract

Humans must compensate for the reaction forces arising from interaction with the physical environment. Recent studies have shown that humans can acquire a neural representation of the relationship between motor commands and movement, i.e. learn an internal model of environmental dynamics. We discuss feed-forward adaptation in a varying dynamic environment during reaching movements. Subjects first learned to move in a position-dependent divergent force field (DF) and velocity-dependent force field (VF), then move in a switched force field SF1 (DF→VF) and SF2 (VF→DF). The experimental results show that adaptation to switched force fields is achieved by programming the internal model control and impedance control in a feed-forward manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call