Abstract

Using simulated load obtained by energy consumption simulation software is a feasible way to optimize operation of combined cooling heating and power (CCHP) system. However, due to attenuation and delay of thermal energy on transmission, there may be a mismatch between real demand and supplied energy. To obtain more accurate assessment of supplied energy, this paper analyzes characteristics of thermal load through correlation analysis and principal component analysis. Then, the model of thermal load forecasting considering attenuation and delay on transmission is constructed and a case study with actual monitored data in an energy system is employed. Finally, a method of feed-forward active operation optimization for CCHP system is put forward. Based on forecasted thermal load on weekday and weekend in heating, transition and cooling season, dynamic matching optimization and evaluation were carried out. Results show that mean absolute percentage error are 5.43% for heating load forecasting and 6.84% for cooling load forecasting, respectively. The performances of CCHP system are better than that of separate system based on the forecasted thermal load and the maximum integrated performance index is 68.81%, obtained at weekend in cooling season.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call