Abstract
Federated Learning (FL) permits different parties to collaboratively train a global model without disclosing their respective local labels. A crucial step of FL, that of aggregating local models to produce the global one, shares many similarities with public decision-making, and elections in particular. In that context, a major weakness of FL, namely its vulnerability to poisoning attacks, can be interpreted as a consequence of the one person one vote (henceforth 1p1v) principle that underpins most contemporary aggregation rules. In this paper, we introduce FedQV, a novel aggregation algorithm built upon the quadratic voting scheme, recently proposed as a better alternative to 1p1v-based elections. Our theoretical analysis establishes that FedQV is a truthful mechanism in which bidding according to one's true valuation is a dominant strategy that achieves a convergence rate matching that of state-of-the-art methods. Furthermore, our empirical analysis using multiple real-world datasets validates the superior performance of FedQV against poisoning attacks. It also shows that combining FedQV with unequal voting "budgets'' according to a reputation score increases its performance benefits even further. Finally, we show that FedQV can be easily combined with Byzantine-robust privacy-preserving mechanisms to enhance its robustness against both poisoning and privacy attacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the ACM on Measurement and Analysis of Computing Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.