Abstract

The accurate measurement of pH in highly alkaline environments is critical for various industrial applications but remains a complex task. This paper discusses the development of novel Fe-doped SrCoOx-based FET sensors for the detection of extreme alkaline pH levels. Through a comprehensive investigation of the effects of Fe doping on the structure, electrical properties, and sensing performance of SrCoOx, we have identified the optimal doping level that significantly enhances the sensor's performance in highly alkaline conditions. With a Fe doping level of 5 mol %, the sensitivity of the sensor improves to 0.86 lg(Ω)/pH while maintaining the response rate. Further increasing the Fe doping to 10 mol % results in a sensor that demonstrates favorable response time, a suitable pH range, and a linear correlation between lg(R) and pH. The combination of X-ray photoelectron spectroscopy and X-ray diffraction analysis provides insight into the regulation mechanisms of Fe doping on the crystal structure, electronic structure, and oxygen vacancy concentration of SrCoOx. Our findings indicate that Fe doping leads to an increase in oxygen vacancy concentration and a decrease in the energy barrier for oxygen ion migration, which contributes to the improved sensing performance of the Fe-doped SrCoOx sensors. Additionally, the study highlights the influence of oxygen vacancy concentration on the electrical properties of SrCoOx. Precise control over the concentration of oxygen vacancies is crucial for optimizing the sensitivity and response speed of SrCoOx FET sensors under extreme alkalinity conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.