Abstract

Multi-organ segmentation is a fundamental task and existing approaches usually rely on large-scale fully-labeled images for training. However, data privacy and incomplete/partial labels make those approaches struggle in practice. Federated learning is an emerging tool to address data privacy but federated learning with partial labels is under-explored. In this work, we explore generating full supervision by building and aggregating inter-organ dependency based on partial labels and propose a single-encoder-multi-decoder framework named FedIOD. To simulate the annotation process where each organ is labeled by referring to other closely-related organs, a transformer module is introduced and the learned self-attention matrices modeling pairwise inter-organ dependency are used to build pseudo full labels. By using those pseudo-full labels for regularization in each client, the shared encoder is trained to extract rich and complete organ-related features rather than being biased toward certain organs. Then, each decoder in FedIOD projects the shared organ-related features into a specific space trained by the corresponding partial labels. Experimental results based on five widely-used datasets, including LiTS, KiTS, MSD, BCTV, and ACDC, demonstrate the effectiveness of FedIOD, outperforming the state-of-the-art approaches under in-federation evaluation and achieving the second-best performance under out-of-federation evaluation for multi-organ segmentation from partial labels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.