Abstract
Load forecasting plays a crucial role in the power system operation and planning. However, with people’s increased awareness of privacy, consumers may not be willing to share their data with the retailer. Thus, the conventional centralized training approach could not be adopted. To tackle these issues, we propose a distributed short-term individual load forecasting method based on the federated learning framework called FedForecast, which could protect the privacy of consumers and make full use of edge computing resources. In this framework, the forecasting models rather than load data are transmitted during the model training and in this way, the privacy of consumers is protected and computation capacity of edge device is fully utilized. The detailed theoretical mathematical proof is presented to verify the convergence of the proposed algorithm. Case studies on the PecanStreet dataset show that the proposed federated approach has comparable performance with the centralized method and robustness of the proposed framework is also verified. The results demonstrate that the proposed framework could achieve good accuracy and robustness in individual probabilistic load forecasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical Power & Energy Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.