Abstract

Motivated by the growth of the commercial space economy and renewed focus on the disaggregation of military space systems, this work develops a method for conceptual design of federated satellite systems as a collaborative system of systems (SOS). Objectives seek to improve the likelihood of successful SOS formation and pursue constituent system utility robustness. The proposed metaheuristic optimization trade-space exploration method accounts for technical and economic design variables and multi-decision-maker strategy dynamics. Constituent system designs are ranked on their simulated net present value. A game-theoretic measure of risk dominance is used in concert with the net present value to assess the robustness and utility of candidate SOS designs. The method is validated with a notional application case that assesses potential collaboration between Earth-observing and telecommunications systems. The proposed methodology reduces the threshold probability of partner collaboration for which SOS participation is economically rational by up to 18% for the most efficient designs as compared to a typical conceptual design method, thereby increasing the likelihood of successful SOS formation. The results highlight the importance of accounting for strategy dynamics when designing systems for collaboration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call