Abstract
In this paper, the content popularity prediction problem in fog radio access networks (F-RANs) is investigated. In order to obtain accurate prediction with low complexity, we propose a novel context-aware popularity prediction policy based on <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">federated learning</i> (FL). Firstly, user preference learning is applied by considering that users prefer to request the contents they are interested in. Then, users’ context information is utilized to cluster users efficiently by adaptive context space partitioning. After that, we formulate a popularity prediction optimization problem to learn the local model parameters by using the stochastic variance reduced gradient (SVRG) algorithm. Finally, FL based model integration is proposed to learn the global popularity prediction model based on local models using the distributed approximate Newton (DANE) algorithm with SVRG. Our proposed popularity prediction policy not only can predict content popularity accurately, but also can significantly reduce computational complexity. Moreover, we theoretically analyze the convergence bound of our proposed FL based model integration algorithm. Simulation results show that our proposed policy increases the cache hit rate by up to 21.5 % compared to existing policies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.