Abstract
AbstractThe incentive mechanism of federated learning has been a hot topic, but little research has been done on the compensation of privacy loss. To this end, this study uses the Local SGD federal learning framework and gives a theoretical analysis under the use of differential privacy protection. Based on the analysis, a multi‐attribute reverse auction model is proposed to be used for user selection as well as payment calculation for participation in federal learning. The model uses a mixture of economic and non‐economic attributes in making choices for users and is transformed into an optimisation equation to solve the user choice problem. In addition, a post‐auction negotiation model that uses the Rubinstein bargaining model as well as optimisation equations to describe the negotiation process and theoretically demonstrate the improvement of social welfare is proposed. In the experimental part, the authors find that their algorithm improves both the model accuracy and the F1‐score values relative to the comparison algorithms to varying degrees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.