Abstract
The proliferation of Internet-of-Things (IoT) devices and cloud-computing applications over siloed data centers is motivating renewed interest in the collaborative training of a shared model by multiple individual clients via federated learning (FL). To improve the communication efficiency of FL implementations in wireless systems, recent works have proposed compression and dimension reduction mechanisms, along with digital and analog transmission schemes that account for channel noise, fading, and interference. The prior art has mainly focused on star topologies consisting of distributed clients and a central server. In contrast, this paper studies FL over wireless device-to-device (D2D) networks by providing theoretical insights into the performance of digital and analog implementations of decentralized stochastic gradient descent (DSGD). First, we introduce generic digital and analog wireless implementations of communication-efficient DSGD algorithms, leveraging random linear coding (RLC) for compression and over-the-air computation (AirComp) for simultaneous analog transmissions. Next, under the assumptions of convexity and connectivity, we provide convergence bounds for both implementations. The results demonstrate the dependence of the optimality gap on the connectivity and on the signal-to-noise ratio (SNR) levels in the network. The analysis is corroborated by experiments on an image-classification task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.