Abstract

Federated learning (FL) is a distributed machine learning framework that can effectively help multiple players to use data to train federated models while complying with their privacy, data security, and government regulations. Due to federated model training, an accurate model should be trained, and all federated players should actively participate. Therefore, it is crucial to design an incentive mechanism; however, there is a conflict between fairness and Pareto efficiency in the incentive mechanism. In this paper, we propose an incentive mechanism via the combination of the Shapley value and Pareto efficiency optimization, in which a third party is introduced to supervise the federated payoff allocation. If the payoff can reach Pareto optimality, the federated payoff is allocated by the Shapley value method; otherwise, the relevant federated players are punished. Numerical and simulation experiments show that the mechanism can achieve fair payoff allocation and Pareto optimality payoff allocation. The Nash equilibrium of this mechanism is formed when Pareto optimality payoff allocation is achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.