Abstract
Background: Federated learning (FL) holds promise for safeguarding data privacy in healthcare collaborations. While the term "FL" was originally coined by the engineering community, the statistical field has also developed privacy-preserving algorithms, though these are less recognized. Our goal was to bridge this gap with the first comprehensive comparison of FL frameworks from both domains. Methods: We assessed 7 FL frameworks, encompassing both engineering-based and statistical FL algorithms, and compared them against local and centralized modeling of logistic regression and least absolute shrinkage and selection operator (Lasso). Our evaluation utilized both simulated data and real-world emergency department data, focusing on comparing both estimated model coefficients and the performance of model predictions. Results: The findings reveal that statistical FL algorithms produce much less biased estimates of model coefficients. Conversely, engineering-based methods can yield models with slightly better prediction performance, occasionally outperforming both centralized and statistical FL models. Conclusion: This study underscores the relative strengths and weaknesses of both types of methods, providing recommendations for their selection based on distinct study characteristics. Furthermore, we emphasize the critical need to raise awareness of and integrate these methods into future applications of FL within the healthcare domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.