Abstract

The realm of federated learning is rapidly advancing amid the era of big data. Therefore, how to select a suitable federated learning algorithm to achieve realistic tasks has become particularly critical. In this study, we explore the impact of different algorithms and models on the prediction results of Federated Learning (FL) using the Fashion-MNIST data set. Federated Learning enhances data privacy and reduces latency by training models directly on local devices since it is a decentralized machine learning approach. We analyze the performance of several FL algorithms including Federated Averaging (FedAvg), Federated Stochastic Gradient Descent (FedSGD), Federated Proximal (FedProx), and SCAFFOLD. Our experiments reveal significant differences in accuracy and stability among these algorithms, highlighting their strengths and weaknesses in handling non-IID (Non-Independent and Identically Distributed) data. FedProx demonstrate superior performance in terms of accuracy and robustness, making them suitable for complex federated learning environments. These discoveries offer crucial insights for choosing suitable FL algorithms and models in practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.