Abstract
Abstract The annotation of ambiguous or subjective NLP tasks is usually addressed by various annotators. In most datasets, these annotations are aggregated into a single ground truth. However, this omits divergent opinions of annotators, hence missing individual perspectives. We propose FLEAD (Federated Learning for Exploiting Annotators’ Disagreements), a methodology built upon federated learning to independently learn from the opinions of all the annotators, thereby leveraging all their underlying information without relying on a single ground truth. We conduct an extensive experimental study and analysis in diverse text classification tasks to show the contribution of our approach with respect to mainstream approaches based on majority voting and other recent methodologies that also learn from annotator disagreements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Association for Computational Linguistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.