Abstract

Deep learning approaches require a large amount of data to be transferred to centralized entities. However, this is often not a feasible option in healthcare, as it raises privacy concerns over sharing sensitive information. Federated Learning (FL) aims to address this issue by allowing machine learning without transferring the data to a centralized entity. FL has shown great potential to ensure privacy in digital healthcare while maintaining performance. Despite this, there is a lack of research on the impact of different types of data heterogeneity on the results. In this study, we research the robustness of various FL strategies on different data distributions and data quality for glaucoma diagnosis using retinal fundus images. We use RetinaQualEvaluator to generate quality labels for the datasets and then a data distributor to achieve our desired distributions. Finally, we evaluate the performance of the different strategies on local data and an independent test dataset. We observe that federated learning shows the potential to enable high-performance models without compromising sensitive data. Furthermore, we infer that FedProx is more suitable to scenarios where the distributions and quality of the data of the participating clients is diverse with less communication cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call