Abstract

In the 6G aerial network, all aerial communication nodes have computing and storage functions and can perform real-time wireless signal processing and resource management. In order to make full use of the computing resources of aerial nodes, this paper studies the mobile edge computing (MEC) system based on aerial base stations (AeBSs), proposes the joint optimization problem of computation the offloading and deployment control of AeBSs for the goals of the lowest task processing delay and energy consumption, and designs a deployment and computation offloading scheme based on federated deep reinforcement learning. Specifically, each low-altitude AeBS agent simultaneously trains two neural networks to handle the generation of the deployment and offloading strategies, respectively, and a high-altitude global node aggregates the local model parameters uploaded by each low-altitude platform. The agents can be trained offline and updated quickly online according to changes in the environment and can quickly generate the optimal deployment and offloading strategies. The simulation results show that our method can achieve good performance in a very short time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call