Abstract

Background and ObjectiveLung tumor annotation is a key upstream task for further diagnosis and prognosis. Although deep learning techniques have promoted automation of lung tumor segmentation, there remain challenges impeding its application in clinical practice, such as a lack of prior annotation for model training and data-sharing among centers. MethodsIn this paper, we use data from six centers to design a novel federated semi-supervised learning (FSSL) framework with dynamic model aggregation and improve segmentation performance for lung tumors. To be specific, we propose a dynamically updated algorithm to deal with model parameter aggregation in FSSL, which takes advantage of both the quality and quantity of client data. Moreover, to increase the accessibility of data in the federated learning (FL) network, we explore the FAIR data principle while the previous federated methods never involve. ResultThe experimental results show that the segmentation performance of our model in six centers is 0.9348, 0.8436, 0.8328, 0.7776, 0.8870 and 0.8460 respectively, which is superior to traditional deep learning methods and recent federated semi-supervised learning methods. ConclusionThe experimental results demonstrate that our method is superior to the existing FSSL methods. In addition, our proposed dynamic update strategy effectively utilizes the quality and quantity information of client data and shows efficiency in lung tumor segmentation. The source code is released on (https://github.com/GDPHMediaLab/FedDUS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call