Abstract

Conventional machine learning methodologies require the centralization of data for model training, which may be infeasible in situations where data sharing limitations are imposed due to concerns such as privacy and gradient protection. The Federated Learning (FL) framework enables the collaborative learning of a shared model without necessitating the centralization or sharing of data among the data proprietors. Nonetheless, in this paper, we demonstrate that the generalization capability of the joint model is suboptimal for Non-Independent and Non-Identically Distributed (Non-IID) data, particularly when employing the Federated Averaging (FedAvg) strategy as a result of the weight divergence phenomenon. Consequently, we present a novel boosting algorithm for FL to address both the generalization and gradient leakage challenges, as well as to facilitate accelerated convergence in gradient-based optimization. Furthermore, we introduce a secure gradient sharing protocol that incorporates Homomorphic Encryption (HE) and Differential Privacy (DP) to safeguard against gradient leakage attacks. Our empirical evaluation demonstrates that the proposed Federated Boosting (FedBoosting) technique yields significant enhancements in both prediction accuracy and computational efficiency in the visual text recognition task on publicly available benchmarks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.