Abstract

We have previously reported the development of a 100% genetically defined engineered Escherichia coli strain capable of producing L-valine from glucose with a high yield of 0.38 g L-valine per gram glucose (0.58 mol L-valine per mol glucose) by batch culture. Here we report a systems biological strategy of employing flux response analysis in bioprocess development using L-valine production by fed-batch culture as an example. Through the systems-level analysis, the source of ATP was found to be important for efficient L-valine production. There existed a trade-off between L-valine production and biomass formation, which was optimized for the most efficient L-valine production. Furthermore, acetic acid feeding strategy was optimized based on flux response analysis. The final fed-batch cultivation strategy allowed production of 32.3 g/L L-valine, the highest concentration reported for E. coli. This approach of employing systems-level analysis of metabolic fluxes in developing fed-batch cultivation strategy would also be applicable in developing strategies for the efficient production of other bioproducts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.