Abstract

Based on kinetic Monte Carlo simulations of the monomer sequences of a representative number of copolymer chains (≈ 150,000), optimal synthesis procedures for linear gradient copolymers are proposed, using bulk Initiators for Continuous Activator Regeneration Atom Transfer Radical Polymerization (ICAR ATRP). Methyl methacrylate and n-butyl acrylate are considered as comonomers with CuBr2/PMDETA (N,N,N′,N′′,N′′-pentamethyldiethylenetriamine) as deactivator at 80 °C. The linear gradient quality is determined in silico using the recently introduced gradient deviation (<GD>) polymer property. Careful selection or fed-batch addition of the conventional radical initiator I2 allows a reduction of the polymerization time with ca. a factor 2 compared to the corresponding batch case, while preserving control over polymer properties (<GD> ≈ 0.30; dispersity ≈ 1.1). Fed-batch addition of not only I2, but also comonomer and deactivator (50 ppm) under starved conditions yields a <GD> below 0.25 and, hence, an excellent linear gradient quality for the dormant polymer molecules, albeit at the expense of an increase of the overall polymerization time. The excellent control is confirmed by the visualization of the monomer sequences of ca. 1000 copolymer chains.

Highlights

  • During the last decades, the design of well-tailored polymers molecules with predetermined number average chain length, high end-group functionality (EGF), controlled topology and low dispersity has been the topic of many research activities [1,2,3,4,5,6,7,8,9,10,11,12,13,14]

  • These advanced macromolecular architectures are typically acquired via controlled radical polymerization (CRP), which is known as reversible deactivation radical polymerization (RDRP)

  • It is shown that fed-batch procedures are beneficial compared to batch initiators for continuous activators regeneration (ICAR) atom transfer radical polymerization (ATRP) under similar overall conditions

Read more

Summary

Introduction

The design of well-tailored polymers molecules with predetermined number average chain length, high end-group functionality (EGF), controlled topology and low dispersity has been the topic of many research activities [1,2,3,4,5,6,7,8,9,10,11,12,13,14] These advanced macromolecular architectures are typically acquired via controlled radical polymerization (CRP), which is known as reversible deactivation radical polymerization (RDRP). For a fast CRP initiation, all dormant species possess after complete monomer depletion ideally a chain length equal to the initial molar ratio of monomer to “CRP initiator”, i.e., the targeted chain length (TCL)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call