Abstract

We study a Markov birth-and-death process on a space of locally finite configurations, which describes an ecological model with a density-dependent fecundity regulation mechanism. We establish existence and uniqueness of this process and analyze its properties. In particular, we show global time-space boundedness of the population density and, using a constructed Foster–Lyapunov-type function, we study return times to certain level sets of tempered configurations. We also find sufficient conditions that the degenerate invariant distribution is unique for the considered process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.