Abstract

Herein, we present a freestanding and flexible 3D nanocomposite made of polyhedral spherical FeCoS2 and nitrogen-doped hollow carbon nanofibers (FeCoS2@N-HCNFs) that is synthesized through coaxial electrospinning, high-temperature calcination, and a facile solvothermal process. As a binder-free anode composite for potassium-ion batteries (PIBs), FeCoS2@N-HCNF presents a high specific discharge capacity on the first lap (701.2 mA h g-1 at 100 mA g-1) and superior cycling stability (132.6 mA h g-1 at 3200 mA g-1 after 600 cycles). The impressive electrochemical performance can be ascribed to the unique 3D structure, such as the enormous specific surface area of the mesoporous structure beneficial for K+ transfer, the three-dimensional hollow carbon nanofiber scaffold enhances the structural stability, and polyhedral spherical FeCoS2 improves the overall specific capacity. According to the above description, the FeCoS2@N-HCNF anode is a promising candidate for advanced potassium-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.