Abstract
A detailed study of the magnetic properties and heating capacities of electrodeposited FeCo nanowires with varying lengths (2–40 μm) and diameters (100 and 300 nm) is reported. We find that specific absorption rate (SAR) increases rapidly with increasing wire length up to 10 μm, followed by a gradual increase for larger lengths. Magnetic and hyperthermia measurements have revealed the important effect of dipolar interactions between the nanowires on their magnetic and inductive heating responses. Both calorimetric and AC magnetometry methods consistently show that the physical movement contribution of the nanowires to the SAR is small, and that for applied fields exceeding the coercive field, the nanowires tend to align parallel to the field, thus enhancing the SAR. Maximum SAR values of ∼1500 W/g have been achieved for the largest wires at H = 300 Oe and f = 310 kHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.