Abstract
FeCo nanoparticles with different surface-layer compositions were synthesized using the polyol method. The compositional difference between the surface layer and the core arises from the dissimilarity in the reduction potentials of Fe and Co at the synthesis temperature. The FeCo nanoparticles consisted of an Fe-rich FeCo alloy core and a Co-rich FeCo oxide layer. The size of the FeCo nanoparticles was approximately 207 nm, and Fe59Co41 (S4) showed optimal intrinsic catalytic activity for an oxygen evolution reaction. The overpotential of S4 was 285 mV at 10 mA/cm2 in 1 M KOH solution, which is much lower than that of the other samples. In addition, after chronopotentiometry at 10 mA/cm2 for 24 h in 1 M KOH, the overpotential at 10 mA/cm2 increased from 285 to 294 mV. The enhancement of the catalyst properties was attributed not only to the synergetic effect of the metal core and oxide layer, but also to the optimal iron doping effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.