Abstract

A high-grain (HG) diet can rapidly lower the rumen pH and thus modify the gastrointestinal microbiome in dairy cattle. Although the prevalence of antibiotic resistance is strongly linked with the gut microbiome, the influences of HG diet on animals' gut resistome remain largely unexplored. Here, we examined the impact and mechanism of an HG diet on the fecal resistome in dairy cattle by metagenomically characterizing the gut microbiome. Eight lactating Holstein cattle were randomly allocated into two groups and fed either a conventional (CON) or HG diet for 3 weeks. The fecal microbiome and resistome were significantly altered in dairy cattle from HG, demonstrating an adaptive response that peaks at day 14 after the dietary transition. Importantly, we determined that feeding an HG diet specifically elevated the prevalence of resistance to aminoglycosides (0.11 vs 0.24 RPKG, P < 0.05). This diet-induced resistance increase is interrelated with the disproportional propagation of microbes in Lachnospiraceae, indicating a potential reservoir of aminoglycosides resistance. We further showed that the prevalence of acquired resistance genes was also modified by introducing a different diet, likely due to the augmented frequency of lateral gene transfer (LGT) in microbes (CON vs HG: 254 vs 287 taxa) such as Lachnospiraceae. Consequently, we present that diet transition is associated with fecal resistome modification in dairy cattle and an HG diet specifically enriched aminoglycosides resistance that is likely by stimulating microbial LGT.IMPORTANCEThe increasing prevalence of antimicrobial resistance is one of the most severe threats to public health, and developing novel mitigation strategies deserves our top priority. High-grain (HG) diet is commonly applied in dairy cattle to enhance animals' performance to produce more high-quality milk. We present that despite such benefits, the application of an HG diet is correlated with an elevated prevalence of resistance to aminoglycosides, and this is a combined effect of the expansion of antibiotic-resistant bacteria and increased frequency of lateral gene transfer in the fecal microbiome of dairy cattle. Our results provided new knowledge in a typically ignored area by showing an unexpected enrichment of antibiotic resistance under an HG diet. Importantly, our findings laid the foundation for designing potential dietary intervention strategies to lower the prevalence of antibiotic resistance in dairy production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call